Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

2,3,5-Trimethyl-1,4-hydroquinone

Jun Dai, Min-Hao Xie, Ya-Ling Liu, Pei Zou and Hao Wu*

Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China Correspondence e-mail: haijiaoyiya@sina.com

Received 27 November 2009; accepted 4 January 2010
Key indicators: single-crystal X-ray study; $T=93 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.040 ; w R$ factor $=0.081$; data-to-parameter ratio $=14.6$.

The molecule of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$, is approximately planar (mean atomic deviation $=0.0346 \AA$) and disposed about a crystallographic centre of symmetry. The H atom of the benzene ring is disordered over four orientations, with occupancies of 0.100 (3) and 0.401 (3) at the C atoms in the 2 - and 3 -positions and the same at their symmetric location. The H atoms of methyl group at the 2-position are disordered over two positions of equal occupancy. In the crystal structure, adjacent molecules are linked through O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a two-dimensional network.

Related literature

The title compound is an important intermediate for the preparation of vitamin E, see: Close \& Oroshnik (1977); Mulhauser \& Chabardes (1986); Yao \& Han (1999).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$

$$
V=395.8(3) \AA^{3}
$$

$M_{r}=152.19$
Monoclinic, $P 2_{1} / n$
$Z=2$
$a=8.035$ (4) A
Mo $K \alpha$ radiation
$b=4.696$ (2) \AA
$\mu=0.09 \mathrm{~mm}^{-1}$
$c=10.503(5) \AA$
$T=93 \mathrm{~K}$
$0.50 \times 0.23 \times 0.05 \mathrm{~mm}$
$\beta=92.813(5)^{\circ}$

Data collection

Rigaku SPIDER diffractometer
Absorption correction: ψ scan
905 independent reflections
(North et al., 1968)
667 reflections with $I>2 \sigma(I)$
$T_{\text {min }}=0.957, T_{\text {max }}=0.996$
$R_{\text {int }}=0.031$
Standard reflections: 0
3724 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.081$

$$
\begin{aligned}
& \mathrm{H} \text { atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& \Delta \rho_{\max }=0.17 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.11 \text { e } \AA^{-3}
\end{aligned}
$$

905 reflections
62 parameters
1 restraint

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O $\cdots \mathrm{O} 1^{\mathrm{i}}$	$0.89(2)$	$1.92(2)$	$2.7833(14)$	$164.9(18)$
Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$				

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2613).

References

Close, R. E. \& Oroshnik, W. (1977). US Patent No. 4055575
Mulhauser, M. \& Chabardes, P. (1986). Eur. Patent No. 0177398
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yao, X. F. \& Han, H. (1999). Hunan Huagong, A29, 14-16.

supplementary materials

2,3,5-Trimethyl-1,4-hydroquinone

J. Dai, M.-H. Xie, Y.-L. Liu, P. Zou and H. Wu

Comment

The molecule of the title compound (Fig.1) is useful as an important intermediate for the preparation of vitamin E (Close et al., 1977; Mulhauser et al., 1986; Yao et al., 1999;). We report here the crystal structure of the title compound. The crystal data show that the molecule is approximately planar and and disposed about a crystallographic centre of symmetry. Two hydroxy groups are attached at C 1 and C 1 a of the benzene ring. The only one hydrogen of the benzene ring can be found in other four positions. The occupancies of hydrogen atom(H2') and methyl group(C4) are 0.100 (3) and 0.900 (3) at C 2 and the same of its symmetric location(C2a). And the occupancies of H3' and C5 are 0.401 (3) and 0.599 (3) at C 3 and C 3 a . Also the H atoms of methyl group(C 4) are disordered over two positions by rotation about its $\mathrm{C}-\mathrm{C} \delta$ bond with equal occupancies.In the crystal structure, adjacent molecules are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional hydrogen-bonded network parallel to the $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ crystallographic plane (Tab 1 and Fig. 2).

Experimental

A sample of commercial 2,3,5-trimethyl-1,4-hydroquinone(Aldrich) was crystalized by slow evaporation of a solution in benzene: colourless platelet-shaped crystals were formed after several days. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta: 2.145,2.172$, $2.181\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 4.194,4.213(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.453(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(400 \mathrm{MHz} ; \mathrm{CDCl} 3) \delta: 11.94,12.28$, $15.90\left(3 \times \mathrm{CH}_{3}\right), 114.33(\mathrm{Ph}-\mathrm{H}), 120.82,121.02,123.48\left(3 \times P h-\mathrm{CH}_{3}\right), 145.90,146.94(2 \times P h-\mathrm{OH})$.

Refinement

The H atom of the benzene ring is disordered over four positions, the occupancies are $0.100(3), 0.401(3)$ and the same of their symmetric location. In the case of methyl group(C 4), H atoms are disordered over two sites of equal occupancy by rotation about the $\mathrm{C}-\mathrm{C}$ bonds. The hydroxyl hydrogen was located by difference Fourier synthesis. Other H atoms were placed in geometry calculated positions, taking full account of the disordered noted above, with C-H set to $0.95 \AA$ and $0.98 \AA$ for benzene and methyl H atoms respectively, and refined with a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ in all cases.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.

supplementary materials

Fig. 2. Presentation of the two-dimensional hydrogen-bonded network. Hydrogen bonds are shown as dashed lines.

2,3,5-Trimethyl-1,4-hydroquinone

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=152.19$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.035$ (4) \AA
$b=4.696(2) \AA$
$c=10.503(5) \AA$
$\beta=92.813(5)^{\circ}$
$V=395.8(3) \AA^{3}$
$Z=2$

Data collection

Rigaku SPIDER
diffractometer
Radiation source: Rotating Anode
graphite
ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.957, T_{\text {max }}=0.996$
3724 measured reflections
$F(000)=164$
$D_{\mathrm{x}}=1.277 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 442(2) K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 930 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=93 \mathrm{~K}$
Platelet, colorless
$0.50 \times 0.23 \times 0.05 \mathrm{~mm}$

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$	Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.081$	H atoms treated by a mixture of independent and constrained refinement
$S=1.00$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0146 P)^{2}+0.186 P\right] \\ & \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
905 reflections	$(\Delta / \sigma)_{\max }<0.001$
62 parameters	$\Delta \rho_{\text {max }}=0.17 \mathrm{e} \AA^{-3}$

1 restraint

$$
\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3} \AA^{-3}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
O1	$0.26338(14)$	$0.4290(2)$	$0.68009(10)$	$0.0409(3)$	
C1	$0.38434(19)$	$0.4579(3)$	$0.58997(12)$	$0.0326(3)$	
C2	$0.34638(18)$	$0.6452(3)$	$0.48939(13)$	$0.0326(3)$	
C3	$0.46482(19)$	$0.6852(3)$	$0.39874(12)$	$0.0325(3)$	
H2'	0.2427	0.7424	0.4831	0.039^{*}	$0.100(3)$
H3'	0.4422	0.8107	0.3291	0.039^{*}	$0.401(3)$
C4	$0.1823(2)$	$0.8010(4)$	$0.47751(16)$	$0.0414(5)$	$0.900(3)$
H4A	0.1143	0.7487	0.5489	0.050^{*}	$0.4501(15)$
H4B	0.1233	0.7487	0.3970	0.050^{*}	$0.4501(15)$
H4C	0.2025	1.0068	0.4790	0.050^{*}	$0.4501(15)$
H4D	0.1791	0.9207	0.4010	0.050^{*}	$0.4501(15)$
H4E	0.1701	0.9207	0.5529	0.050^{*}	$0.4501(15)$
H4F	0.0909	0.6627	0.4709	0.050^{*}	$0.4501(15)$
C5	$0.4153(3)$	$0.8844(5)$	$0.2919(2)$	$0.0353(7)$	$0.599(3)$
H5A	0.2957	0.8652	0.2707	0.042^{*}	$0.599(3)$
H5B	0.4779	0.8375	0.2169	0.042^{*}	$0.599(3)$
H5C	0.4400	1.0808	0.3182	0.042^{*}	$0.599(3)$
H1O	$0.273(2)$	$0.263(5)$	$0.7202(18)$	$0.072(7)^{*}$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0545(7)$	$0.0301(6)$	$0.0389(6)$	$0.0038(5)$	$0.0109(5)$	$0.0004(5)$
C1	$0.0468(9)$	$0.0222(7)$	$0.0290(7)$	$-0.0009(6)$	$0.0030(6)$	$-0.0044(5)$
C2	$0.0429(8)$	$0.0217(7)$	$0.0326(7)$	$0.0022(6)$	$-0.0034(6)$	$-0.0049(5)$
C3	$0.0493(9)$	$0.0201(7)$	$0.0276(7)$	$0.0017(6)$	$-0.0033(6)$	$-0.0012(5)$
C4	$0.0475(11)$	$0.0346(9)$	$0.0417(9)$	$0.0054(8)$	$-0.0014(8)$	$0.0013(7)$
C5	$0.0434(14)$	$0.0308(13)$	$0.0314(12)$	$-0.0034(11)$	$-0.0004(10)$	$0.0051(10)$

Geometric parameters ($A,{ }^{\circ}$)

O1-C1	1.3961 (17)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{O} 1-\mathrm{H1O}$	0.89 (2)	C4-H4B	0.9800
$\mathrm{C} 1-\mathrm{C} 3^{\text {i }}$	1.386 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
C1-C2	1.3968 (19)	C4-H4D	0.9800
C2-C3	1.392 (2)	C4-H4E	0.9800
C2-C4	1.508 (2)	C4-H4F	0.9800
C2-H2'	0.9498	C5-H3'	0.5575
C3-C1 ${ }^{\text {i }}$	1.386 (2)	C5-H5A	0.9800
C3-C5	1.500 (3)	C5-H5B	0.9800
C3-H3'	0.9500	C5-H5C	0.9800
$\mathrm{C} 4-\mathrm{H} 2{ }^{\prime}$	0.5584		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H1O}$	111.0 (12)	H4A-C4-H4C	109.5
C3 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{O} 1$	122.01 (13)	H4B-C4-H4C	109.5
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	121.85 (13)	C2-C4-H4D	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.13 (13)	H2'-C4-H4D	110.8
C3-C2-C1	118.12 (13)	H4A-C4-H4D	141.1
C3-C2-C4	120.17 (13)	H4B-C4-H4D	56.3
C1-C2-C4	121.72 (14)	H4C-C4-H4D	56.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2^{\prime}$	121.0	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{E}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2{ }^{\prime}$	120.9	H2'-C4-H4E	108.6
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2{ }^{\prime}$	0.8	H4A-C4-H4E	56.3
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	120.04 (12)	H4B-C4-H4E	141.1
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 5$	124.41 (15)	H4C-C4-H4E	56.3
C2-C3-C5	115.54 (15)	H4D-C4-H4E	109.5
C1 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3^{\prime}$	120.0	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~F}$	109.5
C2-C3-H3'	120.0	H2'-C4-H4F	109.0
C5-C3-H3'	4.5	H4A-C4-H4F	56.3
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H}^{\prime}$	1.4	H4B-C4- 44 F	56.3
C2-C4-H4A	109.5	H4C-C4-H4F	141.1
H 2 - $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.1	H4D-C4-H4F	109.5
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	H4E-C4-H4F	109.5
H 2 - $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.3	C3-C5-H3'	7.7
H4A-C4-H4B	109.5	H3'- ${ }^{-} 5-\mathrm{H} 5 \mathrm{~A}$	116.4
C2-C4-H4C	109.5	H3'-C5-H5B	103.1
$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.9	H3'- ${ }^{\text {C } 5-\mathrm{H} 5 \mathrm{C}}$	108.7
$\mathrm{C} 3{ }^{\text {i }}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.3 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	-0.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	178.66 (12)	C4-C2-C3-C1 ${ }^{\text {i }}$	179.88 (13)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-179.88 (13)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	178.88 (14)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-1.48 (19)	C4-C2-C3-C5	-1.0 (2)

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$
$D-\mathrm{H}$
$\mathrm{H} \cdots A$
$D \cdots A$
$D-\mathrm{H} \cdots A$

sup-4

supplementary materials

$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{O} \cdots \mathrm{O}^{\mathrm{ii}}$	$0.89(2)$	$1.92(2)$	$2.7833(14)$

Symmetry codes: (ii) $-x+1 / 2, y-1 / 2,-z+3 / 2$.

Fig. 1

supplementary materials

Fig. 2

